Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits

نویسندگان

چکیده

The central challenge in automated synthesis planning is to be able generate and predict outcomes of a diverse set chemical reactions. In particular, many cases, the most likely pathway cannot applied due additional constraints, which requires proposing alternative With this mind, we present Molecule Edit Graph Attention Network (MEGAN), an end-to-end encoder–decoder neural model. MEGAN inspired by models that express reaction as sequence graph edits, akin arrow pushing formalism. We extend model retrosynthesis prediction (predicting substrates given product reaction) scale it up large data sets. argue representing edits enables efficiently explore space plausible reactions, maintaining flexibility modeling fashion achieving state-of-the-art accuracy standard benchmarks. Code trained are made available online at https://github.com/molecule-one/megan.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Bayesian Graph Edit Distance

ÐThis paper describes a novel framework for comparing and matching corrupted relational graphs. The paper develops the idea of edit-distance originally introduced for graph-matching by Sanfeliu and Fu [1]. We show how the Levenshtein distance can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate mat...

متن کامل

Self-organizing Graph Edit Distance

This paper addresses the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps representing attribute distance spaces that encode edit operation costs. The selforganizing maps are iteratively adapted to minimize the edit distance of those graphs that are required to be similar. To demonstra...

متن کامل

Edit Distance From Graph Spectra

This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that it lacks the formality and rigour of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that standard string edit distance techniques can be used. To do this we use graph spectral seri...

متن کامل

Fast Computation of Graph Edit Distance

The graph edit distance (GED) is a well-established distance measure widely used in many applications. However, existing methods for the GED computation suffer from several drawbacks including oversized search space, huge memory consumption, and lots of expensive backtracking. In this paper, we present BSS GED, a novel vertex-based mapping method for the GED computation. First, we create a smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Information and Modeling

سال: 2021

ISSN: ['1549-960X', '1549-9596']

DOI: https://doi.org/10.1021/acs.jcim.1c00537